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Abstract 

With delay coordinates as inputs of neural networks, this paper presents a 
forecasting technique for chaotic time series. By using delay coordinates, the 
chaotic time series is first embedded in a reconstructed state space. Then the 
delay coordinates of each state in the reconstructed state space serve as the input 
vector of the neural network and the first delay coordinate of the next state as the 
target of the neural network. The neural networks used in this paper are two-
layer feedforward networks with one hidden layer of tan-sigmoid neurons  
followed by an output layer of one linear neuron. Meanwhile, Bayesian 
regularization and early stopping of training are applied to improve the network 
generalization. Traffic flows of three different time scales are used as examples to 
show the effectiveness of the technique. Numerical results show that with the 
number of neurons in the hidden layer not more than the number of elements in 
the input vector and for only a few iterations, the neural network will have 
acceptable performance. Although, more neurons or iterations can enhance the 
network performance for the training set, it does not have the tendency to benefit 
the validation and the prediction sets. In addition, the prediction accuracy 
becomes higher, when the traffic volume time scale increases. 
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1. Introduction 

The neural network was originated by McCulloch and Pitts [20], who 
claimed that neurons with binary inputs and a step-threshold activation 
function were analogous to first order systems. Hebb [14] revolutionized 
the perception of artificial neurons. Rosenblatt [24], using the McCulloch-
Pitts neuron and the findings of Hebb, developed the first perception 
model of the neuron, which is still widely accepted today. Hopfield [15] 
and Hopfield et al. [16] demonstrated from work on the neuronal 
structure of the common garden slug that ANNs (artificial neural 
networks) can solve non-separable problems by placing a hidden layer 
between the input and output layers. Rumelhart and McClelland [25] 
developed the most famous learning algorithm in ANN-backpropagation, 
which uses a gradient descent technique to propagate error through a 
network to adjust the weights in an attempt to find the global error 
minimum, marking a milestone in the current artificial neural networks. 
Since then, a huge proliferation in the ANN methodologies has occurred. 

The fact that chaotic behaviors exist in the traffic flow system has 
been known for decades. Gazis et al. [11] developed a generalized car-
following model, known as the GHR (Gazis-Herman-Rothery) model, 
whose discontinuous behavior and nonlinearity suggested chaotic 
solutions for a certain range of input parameters. Traffic systems without 
signals, bottlenecks, intersections, etc. or with a coordinate signal 
network, modelled with the traditional GHR traffic-flow equation, were 
tested for presence of chaotic behaviors [8, 10]. Chaos was also observed 
in a platoon of vehicles described by the traditional GHR model with a 
nonlinear inter-car separation dependent term added [1]. 

Up to now, a variety of methodologies has been applied to short-term 
chaotic time series prediction, including local linear models [9], 
polynomial models [4], and neural network-based black-box models [2, 5, 
6, 23]. This paper adopts neural networks as well, applying the MATLAB 
software [7] to build feedforward-backpropagation neural networks, but 
uses the delay coordinates [3, 22] of the state in the reconstructed state 
space of the time series as the input vector of the neural network and the 
first delay coordinate of next state as the target of the neural network, 
which is distinguished from other authors’ previous works. 
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2. Embedding Dimension 

When mathematical models of dynamical systems are difficult to 
derive and there is only one measured variable, to obtain more 
information about their dynamical behaviors, one usual method is to 
reconstruct its state space by delay coordinates: ( ) ( ) ( ),2,, τ−τ− txtxtx  

( )( ),1, τ−− qtxK  where q is the dimension of the reconstructed state 

space, τ  is the time delay, and ( )tx  is the time series of the measurement. 
To get the right dimension of the reconstructed state space to embed the 
attractor (chaotic or periodic), the dimension of the attractor must first be 
found. There are a number of ways to measure the attractor dimension 
[12, 22]. Among them, correlation dimension is adopted in this paper. 

Given an orbit discretized to a set of N points in the state space, as 
shown in Figure 1, a sphere of radius r is constructed at each point of the 
orbit, and the number of points in each sphere is counted. A correlation 
function is then defined as 
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the orbit and H is the unit step function. For many attractors, this 
function exhibits a power law dependence on r, as ;0→r  that is, 
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Hence, the correlation dimension is defined by the expression 
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The dimension of the attractor will approach an asymptote d with the 
dimension q of the reconstructed state space gradually increasing. To 



JIIN-PO YEH 76

represent the attractor one to one without causing self-intersection, the 
embedding dimension of the attractor must be at least 12 +d  [26]. 
Therefore, the appropriate dimension for the reconstructed state space 
will be the smallest integer .12 +≥ dν  For a chaotic attractor, the 
dimension d is always fractal, not an integer. The delay coordinates of the 

-ν dimensional state space will serve as the input vector of the neural 
networks. 

3. Neural Networks 

The forecasting model used in this paper is built, based on a two-layer 
feedforward neural network with the backpropagation training algorithm, 
as shown in Figure 2. The transfer function used in the single hidden 
layer is the tan-sigmoid function for mapping the input to the interval 
(−1, 1) of the following form 
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where RiRiRiii xxxbxwxwxwn ,,,, 212211 KK ++++=  are the 

inputs, s is the number of neurons, iRii www ,,, 21 K  are the weights 

connecting the input vector and the i-th neuron, and ib  is the bias of the 

i-th neuron. The output layer with a single neuron uses the linear 
transfer function 

( ) ,nnfa ==  (5) 

where issisaa WWWbaWWWn ,,,, 12111211 21 KKK ++++=  are the 

weights connecting the neurons of the hidden layer and the neuron of the 
output layer, and b is the bias of the output neuron. 

There are many variations of the backpropagation algorithm, which 
is aimed at minimizing the network performance function, i.e., the mean 
square error between the network outputs and the target outputs, which 
is 
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where jt  and ja  are the j-th target output and network output, 

respectively. This paper selects the Levenberg-Marquardt algorithm [13, 
17, 19] as the training function to minimize the network performance 
function. This algorithm interpolates between the Newton’s algorithm 
and the gradient descent method. If a tentative step increases the 
performance function, this algorithm will act like the gradient descent 
method, while it shifts toward Newton’s method, if the reduction of the 
performance function is successful. In this way, the performance function 
will always be reduced at each iteration of the algorithm. To make the 
neural networks more efficient, it is often useful to scale inputs and 
targets so that they will always fall within a specific range. For example, 
the following formula 

( ) ,1minmax
min2 −
−

−=′ kk  (7) 

is used in this paper to scale both inputs and targets, where k is the 
original value, k′  is the scaled value, and max and min are the maximum 
and minimum of the inputs or targets, respectively. Equation (7) produces 
inputs and targets in the range [−1, 1]; the scaled outputs of the networks 
will be usually converted back to the original units. 

There are two methods to improve the network generalization: 
Bayesian regularization [18] and early stopping. The Bayesian 
regularization provides a measure of how many network parameters 
(weights and biases) are being effectively used by the network. From this 
effective number of parameters, the number of neurons required in the 
hidden layer of the two-layer neural network can be derived by the 
following equation 

( ) ( ) ,1 PssRs =+++  (8) 

where R is the number of elements in the input vector, s is the number of 
neurons in the hidden layer, and P is the effective number of parameters 
found by the Bayesian regularization. With the strategy of early stopping 
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incorporated into the neural network, the error on the validation set is 
monitored during the training process. When the network begins to 
overfit the training data, the error on the validation set typically begins 
to rise. Once the validation error increases for a specified number of 
iterations, the training is stopped and the weights and biases at the 
minimum of validation error are returned. To evaluate the performance 
of the trained network, this paper makes use of a regression analysis 
between the network outputs and the corresponding targets, and 
expresses it by both scatter plots and correlation coefficients [21]. 

4. Numerical Results 

Examples given in this paper are the westbound passing traffic 
volume at the intersection of Xingai Road and Guanfu S. Road, Taipei 
City, Taiwan. The data were collected by the vehicle traffic counter from 
August 22, 2005 to September 2, 2005, totaling 10 weekdays with the 
weekend excluded. There are three time scales involved: 5-min, 10-min, 
and 15-min. The data is divided into three sets: the training set (the first 
7 days), the validation set (the 8th and 9th days), and the prediction set 
(the 10th day). 

4.1. Reconstruction dimension 

Time series of the three different time intervals show no repeat of 
themselves and have the tendency to be aperiodic. For example, Figure 3 
shows the time series of the 5-min traffic volume for the training set (first 
7 days totaling 2016 observations). The state-space dimension q for the 
delay-coordinate reconstruction is increased gradually from 3 to 22. For 
each reconstruction, the correlation dimension of the chaotic attractor is 
found. Figures 4(a), (b), and (c) show the limiting behavior of the 
correlation dimension with time delay τ  fixed at 10, for the 5-min, 10-min 
and 15-min interval traffic volumes, respectively. Asymptotes of the 
correlation dimension are obtained for a variety of time delays, as shown 
in Table 1. These dimensions range from 6.408 to 6.462; accordingly, the 
embedding dimension is found to be 14 for different time intervals and 
time delays. The results also indicate the choice of time delay in fact is 
not decisive. 
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4.2. Prediction of traffic volume 

This paper employed the neural network toolbox of MATLAB 
software to set up neural networks and perform the training. The 
elements of the input vector consist of 14-dimensional delay coordinates: 
( ) ( ) ( ) ( ),13,,2,, τ−τ−τ− ixixixix K  where )(ix  is the i-th observation 

of the time series of traffic volume, and τ  is the time delay, which is 
chosen to be 20, 10, and 5 for 5-min, 10-min, and 15-min traffic volumes, 
respectively. The network target corresponding to this input is ( ),Tix +  

where T is the time interval of the traffic volume. All forecasts are only 
one time interval ahead of occurrence, i.e., 5-min, 10-min or 15-min ahead 
of time. When using the strategy “early stopping” to monitor the training 
process, the allowed number of iterations for the validation error to 
increase is set to be 5. 

4.2.1. 5-min traffic volume 

First of all, generate a feedforward, backpropagation neural network 
with the Bayesian regularization to get the effective number of network 
parameters. This network inputs and targets are imported from the 14-
dimensional delay coordinates of the training set: ( ) ( ) ( ),2,, τ−τ− ixixix  

( ),13, τ−ixK  and ( ),Tix +  respectively. The results are shown in 

Figure 5, which shows the network uses approximately 216 parameters; 
therefore, the appropriate number of neurons in the hidden layer is found 
to be 14 (equal to the number of elements in the input vector). Then, 
replace the number of neurons in the hidden layer with 14 and train the 
network again by the Levenberg-Marquardt algorithm coupled with the 
strategy “early stopping.” The training process stops at 10 epochs because 
the validation error already has increased for 5 iterations. Figure 6 shows 
the scatter plot for the training set with correlation coefficient 

.90249.0=ρ  Lastly, simulate the trained network with the prediction 

set. Figure 7 shows the scatter plot for the prediction set with the 
correlation coefficient .83086.0=ρ  Time series of the observed value 
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(network targets) and the predicted value (network outputs) are shown in 
Figure 8. If the strategy “early stopping” is disregarded and 100 epochs is 
chosen for the training process, the trained network performance indeed 
improves for the training set, but gets worse for the validation and 
prediction sets. If  the number of neurons in the hidden layer is increased 
to 28 and 42, the performance of the network for the training set tends to 
improve, but does not have the tendency to significantly improve for the 
validation and prediction sets, as listed in Table 2. 

4.2.2. 10-min traffic volume 

Similarly, the effective number of parameters is first found to be 108, 
as shown in Figure 9; therefore, the appropriate number of neurons in the 
hidden layer is found to be 7 (one half of the number of elements in the 
input vector). Replace the number of neurons in the hidden layer with 7 
and train the network again. The training process stops at 11 epochs 
because the validation error has increased for 5 iterations. Figure 10 
shows the scatter plot for the training set with correlation coefficient 

.93874.0=ρ  Simulate the trained network with the prediction set. 

Figure 11 shows the scatter plot for the prediction set with the correlation 
coefficient .91976.0=ρ  Time series of the observed value (network 

targets) and the predicted value (network outputs) are shown in Figure 
12. If the strategy “early stopping” is disregarded and 100 epochs is 
chosen for the training process, the performance of the network improves 
for the training set, but gets worse for the validation and prediction sets. 
If the number of neurons in the hidden layer is increased to 14 and 28, 
the performance of the network for the training set tends to improve, but 
does not have the tendency to improve for the validation and prediction 
sets, as listed in Table 3. 

4.2.3. 15-min traffic volume 

Likewise, the effective number of parameters is found to be 88, as 
shown in Figure 13. Instead of using 6 neurons, 7 neurons (one half of the 
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number of elements in the input vector), are used in the hidden layer for 
consistence. Replace the number of neurons in the hidden layer with 7 
and train the network again. The training process stops at 11 epochs 
because the validation error has increased for 5 iterations. Figure 14 
shows the scatter plot for the training set with correlation coefficient 

.95113.0=ρ  Simulate the trained network with the prediction set. 

Figure 15 shows the scatter plot for the prediction set with the 
correlation coefficient .93333.0=ρ  Time series of the observed value 

(network targets) and the predicted value (network outputs) are shown in 
Figure 16. If the strategy “early stopping” is disregarded and 100 epochs 
is chosen for the training process, the performance of the network gets 
better for the training set, but gets worse for the validation and 
prediction sets. If the number of neurons in the hidden layer is increased 
to 14 and 28, the performance of the network for the training set tends to 
improve, but does not have the tendency to significantly improve for the 
validation and prediction sets, as listed in Table 4. 

5. Conclusions 

Numerical experiments have shown the effectiveness of the technique 
introduced in this paper to predict short-term chaotic time series. When 
reconstructing the state space of the chaotic time series, the choice of time 
delay is not decisive, when building the neural networks, the effective 
number of neurons in the hidden layer can be derived with the aid of the 
Bayesian regularization instead of using the trial and error. Using 
neurons in the hidden layer more than the number decided by the 
Bayesian regularization can indeed improve the performance of neural 
networks for the training set, but does not significantly contribute to the 
performance for the validation and prediction sets. Although, 
disregarding the strategy “early stopping” can improve the network 
performance for the training set, it has worse performance for the 
validation and prediction sets. For chaotic traffic flow, the longer the 
traffic volume scales, the better the prediction of the traffic flow.  
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Table 1. Asymptotes of correlation dimension for different time 
intervals and delays 

    Time Delay 
 

Time Interval 

10=τ  20=τ  30=τ  40=τ  50=τ  60=τ  70=τ  

5-min 6.408 6.427 6.447 6.433 6.432 6.462 6.440 

10-min 6.423 6.415 6.416 6.419    

15-min 6.444 6.443 6.430     

 

 

 

 

Table 2. Correlation coefficients for training, validation and 
prediction data sets with the number of neurons in the hidden layer 
increasing (5-min traffic volume) 

No. of Neurons 

 
      Data 

14 28 42 

Training Set 0.90249 0.90593 0.94371 

Validation Set 0.86535 0.86614 0.86757 

Prediction Set 0.83086 0.85049 0.82901 
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Table 3. Correlation coefficients for training, validation and 
prediction data sets with the number of neurons in the hidden layer 
increasing (10-min traffic volume) 

No. of Neurons 

 

      Data 

7 14 28 

Training Set 0.93874 0.95814 0.96486 

Validation Set 0.92477 0.87930 0.88337 

Prediction Set 0.91976 0.90587 0.91352 

 

 

 

 

Table 4. Correlation coefficients for training, validation and 
prediction data sets with the number of neurons in the hidden layer 
increasing (15-min traffic volume) 

No. of Neurons 

 
       Data 

7 14 28 

Training Set 0.95113 0.96970 0.97013 

Validation Set 0.88594 0.93893 0.92177 

Prediction Set 0.93333 0.94151 0.94915 
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Figure 1. A trajectory in the state space. 

 

 

 

 

Figure 2. The feedforward neural network with two layers. 
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Figure 3. Time series of the 5-min traffic volume. 
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Figure 4. The asymptotes of correlation dimension with the state-
space dimension n increasing from 3 to 22 and time delay τ fixed at 
10, (a) the 5-min traffic volume, (b) the 10-min traffic volume, and (c) 
the 15-min traffic volume. 
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Figure 5. The convergence process to find effective number of 
parameters used by the network for the 5-min traffic volume. 

 

Figure 6. The scatter plot of the network outputs and targets for the 
training set of the 5-min traffic volume. 
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Figure 7. The scatter plot of the network outputs and targets for the 
prediction set of the 5-min traffic volume. 

 

Figure 8. Time series of the observed value (network targets) and 
the predicted value (network outputs) for the 5-min traffic volume. 
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Figure 9. The convergence process to find effective number of 
parameters used by the network for the 10-min traffic volume. 

 

Figure 10. The scatter plot of the network outputs and targets for 
the training set of the 10-min traffic volume. 
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Figure 11. The scatter plot of the network outputs and targets for 
the prediction set of the 10-min traffic volume. 

 

Figure 12. Time series of the observed value (network targets) and 
the predicted value (network outputs) for the 10-min traffic volume. 
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Figure 13. The convergence process to find effective number of 
parameters used by the network for the 15-min traffic volume. 

 

Figure 14. The scatter plot of the network outputs and targets for 
the training set of the 15-min traffic volume. 
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Figure 15. The scatter plot of the network outputs and targets for 
the prediction set of the 15-min traffic volume. 

 

Figure 16. Time series of the observed value (network targets) and 
the predicted value (network outputs) for the 15-min traffic volume. 
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